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Presentation Objectives

• inSTREAM our individual-based trout model

• Advantages of IBMs for modeling fish population 
response to stressors

• Example applications of our stream trout IBM to 
management research and decision-making
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What is an IBM?

• A model of the environment
+

• Models of individual animals
– The mechanisms by which the environment affects an individual
– The mechanisms by which individuals interact
– The behaviors individuals use to adapt to their environment 

and each other

• Population responses that emerge from individual behaviors
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What is an IBM? Demo
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• IBM’s resolve the two fundamental dilemmas of 
modeling: 
– Models usually assume many individual organisms can be 

described by a single variable like population size or biomass. 
IBM’s provide for individuals and their differences.

– Most models don’t distinguish between organisms’ locations.  
IBM’s provide for distinctive interactions with neighboring 
individuals and the local environment.

Why an Individual-based Model?
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• Complex, cumulative effects can be simulated:
– Base flow
– High and low flows: timing and magnitude
– Temperature
– Turbidity
– Losses of individuals (angler harvest, diversion entrainment)
– Food production
– Reproduction, recruitment
– Species interactions: competition, predation
– ...

Advantages of IBMs for Modeling Fish 
Population Response to Stressors
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• Complex, cumulative effects can be simulated:

• These complex interactions emerge from individual-
level mechanisms 
– instead of having to be foreseen and built into a model

– you just have to model how stressors affect individuals

Advantages of IBMs for Modeling 
Response to Stressors
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• IBMs are testable in many ways

– They can produce many kinds of predictions 
that can be tested with many kinds of data

• Habitat selection patterns over space, time, flow ...
• Statistical properties of population (size, abundance)
• Trends in abundance with environmental factors
• etc.

Advantages of IBMs

10

• IBMs provide a way out of the complexity - uncertainty 
dilemma:

– A well-designed IBM is a collection of simple submodels for 
separate processes at the individual level

– Each submodel can be parameterized and tested with all the 
information available for its process

– Yet IBMs can simulate complex population level responses

Advantages of IBMs
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Stream Trout Model

• Habitat is modeled as rectangular cells
• External hydraulic model simulates how 

depth, velocity vary with flow
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Stream Trout Model

• Habitat:
– Water depths and 

velocities
– Temperature, turbidity
– Food availability
– Daily time step

• Fish:
– Habitat selection 

(choosing the best cell)
– Feeding and growth
– Mortality
– Spawning & incubation
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Feeding Model

• Drift feeding strategy

– Food intake per fish:
Food concentration × velocity × capture area.

Capture area: 

Reactive 
distance

D
ep

th

14

Feeding Model

• Food intake varies between drift and search 
feeding strategies
– Relative advantages depend on flow, fish size, habitat

• Food intake can be limited by competition 
(food consumed by bigger fish)

• Each fish picks the feeding strategy offering 
highest growth
– Preferred strategy can vary among cells
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Growth Model (bioenergetics)

• Growth = Food intake - metabolic costs

– Metabolic costs:
• increase with swimming speed
• increase with temperature
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Foraging Model: Growth vs. 
Velocity, Fish Size, Feeding Strategy
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Survival Model

• Survival probabilities:
– Vary with habitat
– Depend on fish size, condition
– Include:

• Poor condition (starvation) 
• Terrestrial predation
• Aquatic predation
• High temperature
• High velocity (exhaustion)
• Stranding (low depth) 18

Survival Model: Overall Risks
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Survival Model: Overall Risks
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Habitat Selection: Overview

• Habitat selection is critical:
– Moving is the primary way fish adapt to changing 

conditions

• Our approach assumes fish use behaviors that 
evolved to maximize fitness
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Habitat Selection Rules

• Move to the cell that offers highest potential 
“fitness”

– (within the radius that fish are assumed to be 
familiar with)

– Railsback, S. F., R. H. Lamberson, B. C. Harvey and W. E. Duffy 
(1999). Movement rules for spatially explicit individual-based 
models of stream fish. Ecological Modelling 123: 73-89.
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Habitat Selection: Fitness Measure

• Fish move to cell offering highest fitness

• Key elements of fitness are:
– Future survival
– Attaining reproductive size
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Habitat Selection: Summary
How a Fish Rates A Potential Destination Cell

• Considers:
– Potential growth in cell (function of habitat, competition)
– Mortality risks in cell (function of habitat)
– Its own size and condition

• Probability of surviving for 90 days in the cell?
– Assuming today’s conditions persist for the 90 days

• How close to reproductive size after 90 d in the cell?

• Rating = Survival probability × fraction of reproductive size
24

• Many realistic behaviors emerge:
– Normal conditions: territory-like spacing

– Short-term risk: fish ignore food and avoid the risk

– Hungry fish take more chances to get food 
(and often get eaten)

– Conditions like temperature, food availability, fish density 
affect habitat choice

Habitat Selection
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• The “pattern-oriented” analysis approach:

– Test specific processes of an IBM by whether it reproduces a 
wide range of behaviors that emerge from the process

– Test a complete IBM by whether it reproduces a wide range of 
observed population-level patterns

– Railsback, S. F. (2001). Getting “results”: the pattern-oriented approach to 
analyzing natural systems with individual-based models. 
Natural Resource Modeling 14: 465-474.

Analyzing Individual-based Models
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• Validation:
– Individual level

• Railsback, S. F. and B. C. Harvey (2002). Analysis of habitat selection rules 
using an individual-based model. Ecology 83: 1817-1830.

– Population level
• Railsback, S. F., B. C. Harvey, R. H. Lamberson, D. E. Lee, N. J. Claasen and 

S. Yoshihara (2002). Population-level analysis and validation of an individual-
based cutthroat trout model. Natural Resource Modeling 15: 83-110.

Pattern-Oriented Analysis of inStream
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Validation of Habitat Selection 
Rules: Six Patterns (a)

• Feeding hierarchies

• Movement to channel margin during high flow

• Juveniles respond to competing species by using  
less optimal habitat (higher velocities)
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Validation of Habitat Selection 
Rules: Six Patterns (b)

• Juveniles respond to predatory fish by using 
shallower, faster habitat 

• Use of higher velocities in warmer seasons

• Habitat shift in response to reduced food
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Expected Reproductive Maturity vs. 
Habitat Suitability Criteria as 
Indicators of Habitat Quality

• PHABSIM habitat 
suitability criteria 
(HSC)

– Basis: Empirical 
observations of fish

• Expected 
Reproductive Maturity 
(EM)

– Basis: Mechanistic 
models of feeding, 
mortality risks, fitness
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EM vs. HSC 
Indicators of Habitat Quality

• HSC

Habitat rating varies only 
with fish life stage:

fry, juvenile, adult, 
spawning

(occasionally: season)

• EM

Habitat rating varies with:
Fish size
Fish condition
Temperature & season
Food availability
Cover for hiding, feeding
Other factors affecting 
growth or survival
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EM as an Indicator of Habitat Quality

Base Scenario: 15 cm Trout
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• Adult trout 
– drift feeding 
– using velocity shelter
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EM as an Indicator of Habitat Quality:
With vs. Without Velocity Shelters for Drift Feeding

No Velocity Shelter Scenario
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EM as an Indicator of Habitat Quality: 
Without vs. With Hiding Cover

Base Scenario: 15 cm Trout
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High Hiding Cover Scenario
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EM as an Indicator of Habitat Quality: 
15° vs. 5° Temperature

Base Scenario: 15 cm Trout
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Low Temperature Scenario: 5C
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EM as an Indicator of Habitat Quality: 
Low vs. High Turbidity

Base Scenario: 15 cm Trout
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Turbidity Scenario: 30 NTUs
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Example Use of IBM for Management Research: 
Effect of Habitat Complexity on Population Dynamics

• Observed pattern: When deep pools are eliminated, 
a lower abundance of large trout results:
– Bisson & Sedell (1984) observed fewer pools & fewer large trout in 

clearcuts

• Simulation experiment: 
– Simulate populations over 5 years with, without 

pool habitat in the model

– Railsback, S. F., B. C. Harvey, R. H. Lamberson, D. E. Lee, N. J. 
Claasen and S. Yoshihara (2002). Population-level analysis and 
validation of an individual-based cutthroat trout model. 
Natural Resource Modeling 15: 83-110.
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Effect of Habitat Complexity on 
Population Dynamics

• Simulation results (1):
– Abundance of all age classes was lower when pools were 

removed

– Impact was greatest on oldest age class

– Terrestrial predation caused the lower abundance - pools 
provide shelter from terrestrial predators
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Effect of Habitat Complexity on 
Population Dynamics

• Simulation results (2):
– Size of age 0 and 1 trout increased when pools were 

removed -

– Why??
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Effect of Habitat Complexity on 
Population Dynamics

• Simulation results (2):
– Size of age 0 and 1 trout increased when pools were 

removed -

• Abundance decreased, so there was less competition for 
food

• Age 1 trout were forced to use faster, shallower habitat 
where predation risk is higher 
BUT food intake and growth is higher
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Example IBM Application: Effects of 
Instream Flow Magnitude & Variability

• How does the amount and timing of flow affect 
trout abundance and growth?

• Site: Little Jones Creek 
(3rd order coastal stream in N. California)

• Scenarios: hypothetical hydropower reservoir 
– Constant flow  vs. Natural monthly mean flow

• Simulations: 10 years, 5 replicates per scenario
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Example IBM Application: Effects of 
Instream Flow Magnitude & Variability
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• How does the amount and timing of flow 
affect trout abundance and growth?
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Example Application: 
Effects of Turbidity

• Turbidity decreases feeding ability, 
but decreases predation risk

What are the population-level consequences?

• Site: Little Jones Creek

• Five turbidity scenarios: 
– Turbidity = x Q
– Five values of x: very clear to very turbid streams
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Example Application: 
Effects of Turbidity

• Result: Interactions between turbidity and food 
availability are strong
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Example Use of IBM for Management Research:
Habitat Selection vs. Habitat Quality

• Theory to be tested: The habitat that animals use most 
often is the best habitat

– This assumption is the basis for many management models

– It is widely questioned but very difficult to test in the field

• “Relations between habitat quality and habitat selection in a virtual trout 
population.” Railsback, S. F., H. B. Stauffer, and B. C. Harvey. 
(to appear in Ecological Applications.)

45

Habitat Selection vs. Habitat Quality

• “Habitat Selection” = the observed choice of habitat 

• DEN is evaluated as observed animal density 

DEN= (# animals using a habitat type) / (area of habitat type)
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Habitat Selection vs. Habitat Quality

• “Habitat Quality” or Fitness Potential (FP) = the fitness 
provided to an animal by a habitat type, in the absence of 
competition 
– “Preference”: the habitat a fish selects in absence of competitors

• In our IBM: 
– We know the FP of each habitat cell because we programmed it

– FP varies among habitat cells with water depth, velocity, feeding 
shelter, hiding shelter

47

Habitat Selection vs. Habitat Quality

• The experiment: 
– Observe DEN (fish density) in each habitat cell (snapshot)

– Calculate FP for each cell

– Examine: How well does DEN predict FP?
(What can you learn about the quality of habitat by 
observing the habitat that animals use?)

– Three ages of trout examined separately 48

What Does Habitat 
Selection Tell You about 

Habitat Quality??
Not much!

• Cells with high density 
usually are fairly high 
quality

• Many high quality cells 
have zero fish

• There is no predictive 
relationship between 
observed fish density 
and habitat quality
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Management Research with the IBM: 
Why is There So Little Relation Between 
Habitat Selection and Habitat Quality?

• (1) Competition:
– Smaller trout don’t use the habitat that is best for 

them because they are excluded by larger fish
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Why is There So Little Relation Between 
Habitat Selection and Habitat Quality?

• (2) Unused and unknown habitat:

– Good habitat for large trout may be vacant because 
there are not enough trout to use it all

– Trout may not use the best available habitat 
because it is too far away to know about
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Why is There So Little Relation Between 
Habitat Selection and Habitat Quality?

• (3) Cells where food is plentiful but hard to 
catch can support more fish at lower fitness:
– Example: Cells with high velocity
– Each fish can catch less food than optimal
– Because each fish gets less of the food, more fish 

can share the cell
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Why is There So Little Relation Between 
Habitat Selection and Habitat Quality?

• (4) Cells where food is plentiful but mortality 
risks are high can support more fish at lower 
fitness:
– Density is high because there is plenty of food but
– Fitness is low because mortality risk are high
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Habitat Selection vs. Habitat Quality

• Conclusions:
– Observed patterns of habitat selection by animals 

tell us little about how good the habitat is

– But does this mean models based on habitat 
selection are worthless?? 
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Are There Problems with Models Based on 
Habitat Selection?

• A second simulation experiment:
– A good habitat selection model can be a useful 

predictor of population response over short times
• When habitat modifications are small
• And it is a dominant species or life stage

– BUT:
• Habitat selection models have fundamental problems 

(mainly: neglecting that habitat selection varies over time)
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Conclusions: 
Key advantages of IBMs for assessing 
impacts of multiple stressors on fish

• IBMs can be used to address more questions 
that are difficult to address with other 
modeling approaches

• IBMs can be more credible than alternatives
– More testable 
– Able to simulate complex responses to many 

stressors without high parameter uncertainty 56

Conclusions: 
Potential Limitations of IBMs

• Computation: There is a limit to how many fish / how much habitat 
we can simulate (overcome with bigger computers, clusters?)

• Models for new groups of fish can be expensive to build

• Expertise: Few biologists are familiar with IBMs 
(or the mechanistic, individual-based view of ecology)

• Acceptance by managers: 
IBMs are unfamiliar, not as simplistic as alternative approaches

• We haven’t done anadromy yet 
(but have put a lot of work into concepts and software)
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Conclusions: Our Status

• Continued evolution, application of the trout model
– Diel shifts in habitat & activity: feeding vs. hiding
– Sub-daily time steps and fluctuating flows

• Interest in new applications of our salmonid IBMs
– Instream flow assessment
– Assessment of restoration activities ...
– Regional stressor-response applications

• Development of new models (juvenile Colorado pikeminnow)

• Development & publication of theory & software 
58

Individual-based Modeling for 
Salmonid Management

http://math.humboldt.edu/~ecomodel/


